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1 Vectors analysis

1.1 What you need to know
In this section, an understanding of the following concepts is required:
e Scalar and vector
e Dot product and cross product
e Grad, div, curl, A
e Einstein notation
e Kronecker delta
e Levi-Civita symbol and its contraction formula
e Display of cross product with Levi-Civita symbol

When using index variables, we follow Einstein notation, and we do not
distinguish between tangent and cotangent spaces. All indices are placed in the
lower position.

1.2 Scalars, Vectors, and Operations
1.2.1 Scalars and vectors

A scalar is represented in a box in graphical notation as shown as

scalar f = .

A vector is in a box with a branch:

vector v =

This branch means Kronecker delta as we will see in EZZ21.

1.2.2 Scalars multiples

Scalar multiplication is represented by placing the scalar coefficient next to the
symbol for the vector or scalar being multiplied:

fo=[7][o][e]

1.2.3 Dot product

The dot product of two vectors u and v is represented by connecting their

branches.

Branch connection of vectors means dot product, i.e., u - v = u;0;;v;.



1.2.4 Levi-Civita symbol of 3 components

In the previous section, we displayed scalars and vectors in a square to represent
their components. However, we will now display indices without a square.
The three component Levi-Civita symbol, denoted by ¢;;i, is represented

graphically as follows:
T 1

Gk 0§ ok

In this diagram, the thick line represents anti-symmetry. Note that exchanging
the branches of the diagram flips the sign of the Levi-Civita symbol.

1.2.5 Cross product

The cross product of vectors u x v is represented graphically as follows, with
the remaining branch indicating that the result is a vector:

1.3 Formulae on dot and cross products of vectors
1.3.1 Contraction formula of Levi-Civita symbol
eijmeklm = 5ik5jl — 5il5jk

Here we use this formula without proof in the following sections. However, we
will provide more details on the contraction formula in B.

.
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1.3.2 Scalar triple product
A- (BxC)=B-(CxA)=C-(AxB)=-B-(AxC)

This can be represented graphically by connecting the branches of a vector to
the cross product of the remaining two, as shown below:

Note that odd permutations of the vectors result in a sign change, while even
permutations do not.



1.3.3 Vector triple product
Ax(BxC)=B(A-C)-C(A-B)

This can be represented by connecting the branch of the cross product to the
other cross product, as shown below:

PRIt T

Note that after even permutations, the Levi-Civita symbols can be contracted
more easily.

1.3.4 Scalar quadruple product

A-C B-C
(AxB)~(C><D)—det<A'D B-D)
It is often written with determinant.

b 2
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1.4 Derivative

In Penrose graphical notation, the derivative operator V (nabla) is represented
by drawing a branch out of a circle and placing what you want to differentiate
inside the circle.

v p—
1.4.1 Gradient

grad f =V f

Place the scalar in the circle.

grad f=Vf =



1.4.2 Divergent
divve=V-v

Connect branches of the vector and the derivative circle.

The branch represents Kronecker delta so the notation means 0;0;;v;.

1.4.3 Curl
curlv =V xv

In penrose graphical notation, this is represented as the following;:
curlv =V x v = .

The Levi-Civita symbol ;1 is used to indicate the anti-symmetry. Note that
the branch of what you differentiate should be placed immediately to the left of
the derivative.

1.4.4 Laplacian
NAA=V?%4A

Connect the branches of derivatives, i.e., 0;0;;0;A. You can operate both on a
scalar and a vector.

ANf=V3f =

Especially when you operate on a scalar, you get immediately divgrad f = Af.

1.4.5 Leibnitz rule
= B+ AV (B

V(AB) =V(4) (B)



1.4.6 Symmetry of second derivatives

A function belonging to class C? satisfies symmetry of second derivatives, which
means that the order of differentiation does not matter. In Penrose graphical
notation, this symmetry can be represented as an exchange of the in and out
circles.

From now on all the quantities are assumed to be smooth, unless otherwise
noted.

1.5 Formulae on derivatives

All of the formulae on derivatives presented below are proven using only five
operations:

e anti-symmetry of Levi-Civita symbol

e even permutation of Levi-Civita symbol indices
e contraction of Levi-Civita symbols

e the Leibnitz rule

e symmetry of second derivatives

The proofs for these formulae are done in a similar way as in Einstein notation.

1.5.1 curl grad =0
curl grad f =V xVf=0

First symmetry of derivatives, second anti-symmetry of Levi-Civita symbol.

We have shown that curl grad f = —curl grad f, which means that the value of
curl grad f is zero.



1.5.2 divcurl =0
diveurlv =V - (Vxv)=0

This can be proved using the same method as in IC2l. First, we apply the
symmetry of derivatives and then the anti-symmetry of the Levi-Civita symbol.

~® - -

We get div curl v = — div curl v, thus the value is zero.

1.5.3 divgrad = A
divgrad f =V -Vf=Af
We noted in 2, but we repeat.

Af=V2f=

1.5.4 grad(fg) = ggrad f + fgradyg

grad(fg) = (grad f)g + f(grad g)
V(fg) = (Vfg+ f(Vg)

Expand by Leibnitz rule.

@A - @8 -

1.5.5 div(fv) =grad f-v+ fdive

div(fv) =grad f - v + fdive
V(fv)=Vf - v+ fV-v

Expand by Leibnitz rule.




1.5.6 div(uxv)=curlu-v—u-curlv
diviu x v) =curlu-v —u-curlv
V-o(uxv)=(Vxu)v—u-(Vxwv)

Use Leibnitz rule and anti-symmetry. Follow the rule in 273 stick the branch
of what you differentiate immediately right of the derivative.

v (B
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1.5.7 curl (fv) =grad f x v+ feurlw

curl (fv) =grad f x v+ f curlv
VX (fv)=Vfxv+ fVxwv

OENRC

1.5.8 curl (u x v) = (v-grad)u + udive —vdivu — (u - grad)v

Expand by Leibnitz rule.

curl (u x v) = (v - grad)u + v dive — v divu — (u - grad)v
Vx((uxv)=(@w -Vu+u(V-v)—v(V-u)—(u-V)v

Contraction of Levi-Civita symbols and Leibnitz rule.

1.5.9 curl curl = graddiv-A

curl curl v = graddive — Av
Vx(Vxwv)=V(V-v)—(V:-V)v



Levi-Civita contraction and symmetry of derivatives.

i |

1.5.10 grad(u-v) =v x curlu + (v - grad)u + u x curl v + (u - grad)v

grad(u - v) = v x curlu + (v - grad)u + u x curl v + (u - grad)v
Viu-v)=vx (Vxu)+ (v -Vut+ux(Vxov)+(u-V)v

First expand by Leibnitz rule.

We cannot write this operation in the normal way, so let’s consider how Levi-
Civita contraction can help. The first term of right-hand side comes from the
following contraction.

1.5.11 A(fg) = (Af)g+2 grad f - grad g + f(Ag)

A(fg) = (Af)g+2 grad f - gradg + f(Ag)
V-V(fg)=(V-Vfg+2(Vf) (Vg) + f(V-Vg)

10



Leibnitz rule twice.

i
/][9]

1.6 Derivative formula on a position vector

When you differentiate a position vector with a nabla, you can contract as the
follows:

o -Tiej = dije;

87“1'

Displaying this in graphical notation, the position vector and the circle disap-
pear, and both ends are connected.

1.6.1 divr=3
divr =V -r=6§;=3

R.H.S. is actually dimension of the space; divr = 4 in 4-dim, n in n-dim.

@ -

The ring of R.H.S. represents connection of both ends of Kronecker delta, i.e.
0. In 3-dim space summed up through i = 1,2, 3.

1.6.2 curlr =0
curlr =V xr=0

Contract the derivative of position.
@)

R.H.S. represents €;;,0;1 = €;5; so that zero.

11



2 Levi-Civita symbols

2.1 What you need to know
This section requires an understanding of the following concepts:
e Upper/lower indices
e Levi-Civita symbol
e Einstein notation
e Kronecker delta

e Determinant and inverse matrix

2.2 Display of tensors

In Penrose graphical notation, tensors are drawn as a box with branches corre-
sponding to the rank of the tensor.

iJ

le —

k

The direction of these branches indicates upper/lower indices.

2.2.1 Kronecker delta

Kronecker delta is displayed as a branch that connects two open ends.

2.2.2 Levi-Civita symbol

Horizontal thick line represents Levi-Civita symbol.

: gk — i J Lk

Gk = q j o ko €=
]
Penrose’s paper represents the product of two Levi-Civita symbols with the
same rank as shown in the following figure. We will also be using this notation.

i 7 -k
ek
p q .« . 7”



2.2.3 Metric tensor
Bending Kronecker delta, you can represent metric tensor.
i ]
gzj = U ) 9ij = ﬂ
v
2.3 Determinant and inverse matrix

Levi-Civita symbols are often used for determinants and inverse matrices. From
now on, we have the lower indices to represent rows, and upper indices to
represent columns;

_(a D 2
M_<c d>:>M1_b.

2.3.1 Determinant

According to the definition, n x n matrix M satisfies

det M = ngn VM7 MO
oeG,

with symmetry group &,,. Note that the sign of permutation is equivalent to
that of Levi-Civita symbol, i.e. sgn(o ) x5 . Therefore

det M = ek M --.M;;m

but it is difficult to manipulate the lower indices in this notation, then we use
the following representation:
1
det M = —el™ TR MEY - M (2)

|01 Unln

Drawing this in graphical notation, we get

1
M= .

2.3.2 Cofactor expansion

Since we get the representation of determinant in graphical notation, we antic-
ipate that cofactor expansion can be interpreted in an intrinsic way.

Mo Mffl M{'H ce M7
o 1 3'—1 i+ n
det M = 3 (=1)77 07 det | Vit Mioy Micy M) ()
i Mi+1 M1+1 M7+1 i+1
M}L e Mf,'fl M,{H s M

13



Here the index i is fixed, but clouds are cleared when you run i, too. Using (B),

1 ; ¥ ) 1 1---7—1.24+1-- T T T Tn
det M = ~ Z(_I)H]Mijme"l“l‘aif;;”ln 071611 pihy ;Jrjzrln Mg - MZm.
i.j ’
Ok, Tk Tuns {1,--- ;i — 1,i+1,--- ;n}h{1,---j — 1,5 + 1,---n}, respectively.
Remark that LEvi-Civita part is

01°°0i—10i+4+1""'0n 1.--9—1,541---n

€1oi 1i+1--n T Tj—1Tj+1"""Tn
o1 01,0041 0n _1ej—1,5,541n
=€ 1,i,i+1---n TL TG 1y T4l T
_51 (5TJ 01:7101:<7i+1“‘Un,€1<--j—1,j,j+1~~n
g;j 4—1,1,i4+1--n T1 o Tj—1TjTj+1""Tn

:( )H-J(;z 57'1 ‘T0}""7}710i+1"'0n61~~j—17.7'7j+1--~n
€. 1—1,4,i+1--n TjTLTj—1Tj41""Tn
thus
1 Tj 1 0i01°°0i—10i4+1""0On 1---5—1,7,7+1---n o1 o
det M = — M7 ————€," 15 € b MZ - MI
n )

23 (n _ 1)| —i—1,4,04+1--n TjT1Tj—1Tj41""Tn

Comparing with graphical notation of determinant, My’ corresponds to the
first M, and remaining n — 1 M’s composes a cofactor.

wo-aie @ D

If you do not run an index as well as (B), the branch of the first M is cut off to
leave the same indices:

1
et = (s
Z_ L

This has to be the product of matrix M and its adjugate M. Thus the adjugate

matrix is,
~ 1
M(de_w>< - @)

2.3.3 Inverse matrix

According to definition, M ~! = M/ det M, i.e.

i

14

M™'=dimM



2.4 Contraction of Levi-Civita symbols

Contraction of Levi-Civita symbols is often defined with a determinant of Kro-
necker delta:

R
eij""kepq...,,: P ,q _T
55 5(1; e Ok

Since it can be challenging to express expansions in general dimensions using
graphical notation, we will discuss contraction formulas in three and four di-
mensions, which are frequently used in relativity theory. However, it is possible
to calculate contractions in the same way in other dimensions.

2.4.1 Contraction in 3-dim.

Writing down with Kronecker delta,

o oL o
ke, =163 8 5
ok o g

= 01000y — 01,6160 + 0,516y — GL616F + 5L.550% — 51670k,

Draw all the connections between the upper and lower ends, and indicate the
sign corresponding to the permutation.

i J ok i J k i J ok i J ok i J ok i J ok i J ok
= = -] X+ XX - |+ -
pqr poq p q pqr poqr poqr poq

Graphical notation of Levi-Civita symbol plays a significant role when some
of the branches are contracted.

When an pair of upper and lower ends is connected, as well as in =3, the
rank of the symbol decreases. It is imortant to note that all three numbers in
1,7, k are different, as in p, ¢, 7.

XY

0 .

g |2 0 s

€epgr = |0 0y 0] = 5? 53

0 0 1 pTe
S

In graphical notation, erase the contracted branches.

i J i J i J i J
- H -1 - X
P q P q P q P q

15



Two pairs contractions needs a factor 2! corresponding to the permutations
of the contracted two indices is introduced.

’ o 0 0
€Fep e =210 1 0] =25
0 0 1

This is as well in graphical notation.

1 .
0 -
p

p

The reason for the factor of 2! in the case of two pairs of contractions is intuitive.
Consider the example where two pairs of indices (4, ¢) and (k,r) are contracted
in a set of three indices (i, j, k), (p, g, 7). In Einstein notation, you have to sum
up the following two cases: the inner connected line is 53, the outer 6F; and
the inner connected line is 6%, the outer 63. Thus you need to count each case,
resulting in a factor of 2!.

When contracting all three indices, you have to set a factor of 3!.

1
Eijkeijk = 3!10
0

) -

You can understand intuitively by considering permutation of the three pairs:
(i,p), (4, @), (k,7)

O = O
= O O
I
(@)}

2.4.2 Contraction in 4-dim.

We will use the Euclid metric for the rest of this section. Note that in Minkowski
metric, the metric tensor

1 i=j=0
gij =1 i=7#0
0 i#j

is multiplied to all the cotangent indices, resulting in negative values for all
results in this section.

16



Computing the troublesome expansion with Kronecker delta, we get the
following terms:

o, Oy O oL
|63 81 6 o
pars = | gk % 5k ok
oL oL ol 4l
=0,030, 0y — 6,03040). — 8,618,0, + 6,61040, + 6,616,0). — 6,61615,,
— 0003080, + 567656, + 6103050 — 5461656, — 0,516, 0L + 6461686},

+ 0067 5F5L — 51575k — 51578k 5167576 + 6167 5F 5L — 5167 8F 5!

ez]kl

r'pTq s r'pTsTq rTqTp-Ts r'qTsTp r-s'pUq rUsTqTp
— 0L03 G0N0 + 0L035) 0L, + 0101500, — 0L015) ), — SLEL6y S, + SL56L,

17



Displaying this expansion in graphical notation is also difficult.

i J ko1 i J ko i J ko1 i J ko1
=== X -] X |
p q 7T s p q 7T S p q 1T S p q r s
i J k1 i J k1 i J k1
X - K

p qr s p q r s P q r s

i J ko1 i J k1 i J k1

- X XX+ X

p q r S p qg r s p q r S

i J ko1 i J k1 i J k1

i -

p q T S p q r S p q r S

Contraction decreases the rank.

5, 8 o

o

: ; g5t g i J k
L. J J J p q T
67,jlcl6 = 6% 6% 67]; 0 =16 & 5 ; =
Pq A U A
0 0 0 1 p % Or pqa T

18



When multiple indices are contracted, set factors 2!, 3!, 4!.

5600
. 86 0 0 §?
ijkl — 91|"p q — 91| P
€ €Epqkl 2! 0 0 1 0 2! 51])
0 0 0 1
5;, 0 0 O
iikl 0 1 0 O i
€7 epint = 3! 0 0 1 0 :3!5p;
0 0 0 1
€M e = 4l

19
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3 Differential form analysis

3.1 What you need to know

In this section, an understanding of the following concepts is required:
e differential form
e Levi-Civita symbol
e wedge product
e exterior product
e interior product

All the indices follow Einstein notation. Derivative symbol 9; differentiates
only the immediate following quantity, i.e., 9; A7 B¥ = 9;(A7)B*.

We write n-ord. symmetric group as &,,. The sign of P € &,, is sgn(P). A
k-ranked Levi-Civita symbol is defined as follows:

1 o 1
op] ap

ept bk =det | L] = Z Sgn(P)éfl(“l) e 511;(%)

Vg . .
Mk L. Mk Pe&
op abk n

3.2 Differential forms and operations

3.2.1 k-form

! !
— M1 oA L Be N My - M
W= Wy Az A= Ad = Wprooopn €t oyt de"t @ - @ dzt* .

Using representation of Levi-Civita symbol, a k-form can be represented as a

box with k branches:
_w
I
Wpyopin =

Mlﬂzm 1223

The symbol of the Levi-Civita tensor is drawn as a thick horizontal line. The
rectangle labelled w is the factor wy, ... e That is, the entire picture represents
Wyl ooopi, eﬁ/}:::ﬁ:’j, thus a k-form.

In graphical notation, it is difficult to display the basis, so we do not write dz
and other symbols explicitly. The branches with empty upper ends represent
the basis for the tangent space 9, and the branches with empty lower ends
represents the basis for the cotangent space dz*.

20



3.2.2 Lie derivative
Ly(tht h10,, -0y @da" @ ®dz")
= VA, © - @0, @de @ @ dz
— Y, VAN ® @0, @da” @ @ da™
— U 0 @ ® 8;”‘/)\5’/\ ®dz"r @ - ®@dx"*
FHLY, @@y, @RV A2t @ - © dan
FHITHY,, ® @0, ®de" @ @ 0\VE da?

In graphical notation, this is drawn as the following figure.

3.2.3 Wedge product

(Epp oo Az Ao A2 ) A (D date+t A A datEE)

et
— H1 Hk+1
=& M1 pnsy AT A - Adw

_ M1 Bk k41 el wh . “;chl
= fmmmnmﬁmukﬂ5#/1.4.%%“...%“ da't ® ®dx

In graphical notation, connect each thick line that pierces the differential form.

¢ 1 [n 1 [_€&€ 1 [n ]

I x L _ ] LT x
T AN T T T T T T

Ml,UQ. M ,Uk+.1' Mk M1 M Mk41 M1

3.2.4 Exterior product
d (wpy ooy, At A - Ada™) = Opwpy oy Azt Adatt Ao A dat®

’ ’
— KoM [k Ko . P
= 8uowu1~~~uk€%#/l...#;c dz''® - - ®@dx

21



Surround the rectangle of factor by a circle and connect a branch into the
beginning of the thick line.

(v D

 —

d =1/ = T T 1
1 2 Mk Mot 2 Mk

3.2.5 Interior product

el ’ ’ ’
Ly (Wpy ooy Azt Ao A datt) = wm...#keﬁimzzvﬂl dz"? @ - - @ dat'*

Put V at the first branch.

[ v ] |
]

[ w
. =
M1M2m M N?H.Mk

3.3 Formulae with differential forms

All the following formulae are proved in the same way as Einstein notation.

3.3.1 Poincaré lemma

=0

Use symmetry of the second derivatives and anti-symmetry of Levi-Civita sym-
bol.

L.H.S. and R.H.S. differs only the sign thus the value must be zero.
3.3.2 Another representation of interior product
W = ko € VI A @ - @ ot
2 k
You can display interior product tyy. Note that the indices of Levi-Civita

symbol starts from psg, (5.
First put the branch of w to V off the thick line.

22



Remember wy,, ..., is anti-symmetric for its indices. The positive terms on
R.H.S. of the first line can be transformed into the first term by even permu-
tations, and negative terms by odd permutations, so that all the terms are
equivalent. There are k terms, thus we obtain the second line.

3.3.3 Cartan formula

(dey + oy dw = Lyw

First draw down the L.H.S. We use another representation of interior product
(cf. B333).

(dov +ovd) H—F =

Focus on the second and the following terms in the first line. The positive
terms can be transformed by even permutation, and negative terms by odd
permutation, into the second term; all terms except the first are equivalent,
thus the second line.



The questioned formula (B) is, therefore, equivalent to the following figure:
w
A+ d) +=—F =k

M1 M2. 123

The first term in R.H.S. is expanded according to anti-symmetry for indices of

Wiy ey -
I o ] [ ]
. 1» 4» 1» N
T = - T B
[ o ] [ v ]
V)
= 3 + — NI

Returning to the former figure, you will find Lie derivative of k-form.
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